C-Papers


论文题名
基于局部单射的平面形状插值形变
Title
Planar Shape Interpolation Based on Local Injective Mapping
作者
齐飞;陈中贵
Institution
厦门大学信息科学与技术学院
期刊名称
计算机辅助设计与图形学学报
CN
11-2925/TP
ISSN
1003-9775
出版日期
2016-12-15
Volume
v.28
Issue
12
YM
21-27
GJZ
特征匹配;同构剖分;三角网格;插值形变
Keywords
feature matching;compatible triangulations;triangular mesh;shape interpolation
LWZY
在只给出用简单多边形表示的两输入形状的情况下,实现一种简单易用、自然高效的形状插值方法.首先利用基于形状感知的特征匹配算法生成源形状和目标形状之间的匹配;之后在源形状上构造三角剖分,并通过求解映射到目标形状上的尽量刚体的局部单射得到同构三角剖分;最后利用扭曲有界的插值方法得到中间序列.实验结果表明,该方法构造的形变结果能较好地体现源形状和目标形状的特征对应信息,形变过程自然,扭曲较小.
Abstract
This paper presents an efficient and easy-to-use planar shape interpolation method, given two input shapes represented by simple polygons. We firstly used a perception-based feature matching algorithm to match the feature points in the source shape with the target shape, then built compatible triangulations by constructing a locally injective mapping between the source and target shapes. Finally, an interpolation method with bounded distortion was adopted to get intermediate frames. Experimental results show that the interpolation results by our method can well reflect the feature correspondences between the source and the target shapes, and the resultant deformation is visually pleasing with less distortion.
Ref
[1]Lazarus F,Verroust A.Three-dimensional metamorphosis:a survey[J].The Visual Computer,1998,14(8/9):373-389 [2]Mokhtarian F,Mackworth A K.A theory of multiscale,curvature-based shape representation for planar curves[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(8):789-805 [3]Heider P,Pierre A,Li R S,et al.Local shape descriptors,a survey and evaluation[C]//Proceedings of the 4th Eurographics Conference on 3D Object Retrieval.Aire-la-Ville:Eurographics Association Press,2011:49-56 [4]Tuytelaars T,Mikolajczyk K.Local invariant feature detectors:asurvey[J].Foundations and Trends?in Computer Graphics and Vision,2008,3(3):177-280 [5]Alexa M,Cohen-Or D,Levin D.As-rigid-as-possible shape Interpolation[C]//Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques.New York:ACM Press.2000:157-164 [6]Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):31-110 [7]Sederberg T W,Greenwood E.A physically based approach to2–D shape blending[J].ACM SIGGRAPH Computer Graphics,1992,26(2):25-34 [8]Mortara M,Spagnuolo M.Similarity measures for blending polygonal shapes[J].Computers&Graphics,2001,25(1):13-27 [9]Sederberg T W,Greenwood E.Shape blending of 2-D piece-wise curves[J].Mathematical Methods in CAGD,1995,3(1):Article No.3 [10]Cohen S,Elber G,Bar-Yehuda R.Matching of freeform curves[J].Computer-Aided Design,1997,29(5):369-378 [11]Lipman Y,Yagev S,Poranne R,et al.Feature matching with bounded distortion[J].ACM Transactions on Graphics,2014,33(3):Article No.26 [12]Liu L G,Wang G,Zhang B,et al.Perceptually based Approach for planar shape morphing[C]//Proceedings of the 12th Pacific Conference on Computer Graphics and Applications.Los Alamitos:IEEE Computer Society Press,2004:111-120 [13]Aronov B,Seidel R,Souvaine D.On compatible triangulations of simple polygons[J].Computational Geometry,1993,3(1):27-35 [14]Surazhsky V,Gotsman C.Controllable morphing of compatible planar triangulations[J].ACM Transactions on Graphics,2001,20(4):203-231 [15]Schüller C,Kavan L,Panozzo D,et al.Locally injective mappings[C]//Proceedings of the 11th Eurographics ACM SIGGRAPH Symposium on Geometry Processing.Aire-la-Ville:Eurographics Association Press,2013:125-135 [16]Surazhsky V,Gotsman C.Intrinsic morphing of compatible triangulations[J].International Journal of Shape Modeling,2011(2):191-201 [17]Surazhsky V,Gotsman C.High quality compatible triangulations[J].Engineering with Computers,2004,20(2):147-156 [18]Fu H,Tai C L,Au K C.Morphing with Laplacian coordinates and spatial-temporal texture[OL].[2016-05-13].http://sweb.cityu.edu.hk/hongbofu/morphing_pg05.pdf [19]Baxter W,Barla P,Anjyo K.Rigid shape interpolation using normal equations[C]//Proceedings of the 6th International Symposium on Non-photorealistic Animation and Rendering.New York:ACM Press,2008:59-64 [20]Lipman Y,Sorkine O,Levin D,et al.Linear rotation-invariant coordinates for meshes[J].ACM Transactions on Graphics,2005,24(3):479-487 [21]Sheffer A,Kraevoy V.Pyramid coordinates for morphing and deformation[C]//Proceedings of the 2nd International Symposium on 3D Data Processing,Visualization and Transmission.IEEE Computer Society Press,2004:68-75 [22]Xu D,Zhang H,Wang Q,et al.Poisson shape interpolation[J].Graphical Models,2006,68(3):268-281 [23]Hu S M,Li C F,Zhang H.Actual morphing:a physics-based approach to blending[C]//Proceedings of the 9th ACM Symposium on Solid Modeling and Applications.Aire-la-Ville:Eurographics Association Press,2004:309-314 [24]Bao Y,Guo X,Qin H.Physically based morphing of pointsampled surfaces.[J].Computer Animation&Virtual Worlds,2005,16(3/4):509-518 [25]Chao I,Pinkall V,Sanan P,et al.A simple geometric model for elastic deformations[J].ACM Transactions on Graphics,2010,29(4):Article No.38 [26]Poranne R,Lipman Y.Provably good planar mappings[J].ACM Transactions on Graphics,2014,33(4):Article No.76 [27]Chen R,Weber O,Keren D,et al.Planar shape interpolation with bounded distortion[J].ACM Transactions on Graphics,2013,32(4):Article No.108 [28]Liu L G,Zhang L,Xu Y,et al.A local/global approach to mesh parameterization[J].Computer Graphics Forum,2008,27(5):1495-1504 [29]Sorkine O,Alexa M.As-rigid-as-possible surface modeling[C]//Proceedings of the 5th Eurographics Symposium on Geometry Processing.Aire-la-Ville:Eurographics Association Press,2007:109-116 [30]Sorkine O,Cohen-Or D,Lipman Y,et al.Laplacian surface editing[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH.New York:ACM Press,2004:175-184 [31]Botsch M,Sorkine O.On linear variational surface deformation methods[J].IEEE Transactions on Visualization and Computer Graphics,2008,14(1):213-230
Fund_Code
国家自然科学基金(61472332);; 中央高校基本科研业务费专项基金(20720140520)
FileName
JSJF201612003

Back to List