C-Papers


论文题名
多源卫星观测的全球海洋次表层温度异常信息提取
Title
Estimation of global subsurface temperature anomaly based on multisource satellite observations
作者
黎文娥;苏华;汪小钦;严晓海
Institution
[黎文娥] 福州大学, 地理空间信息技术国家地方联合工程研究中心;空间数据挖掘与信息共享教育部重点实验室;[苏华] 福州大学, 地理空间信息技术国家地方联合工程研究中心;空间数据挖掘与信息共享教育部重点实验室;[汪小钦] 福州大学, 地理空间信息技术国家地方联合工程研究中心;空间数据挖掘与信息共享教育部重点实验室;[严晓海] 厦门大学-美国特拉华大学近海海洋研究与管理联合研究所
期刊名称
遥感学报
CN
ISSN
1007-4619
出版日期
2017-11
Volume
21
Issue
6
YM
881-891
GJZ
多源卫星观测; 次表层温度异常; 支持向量回归; 信息提取; 全球海洋
Keywords
multisource satellite observation; subsurface temperature anomaly;; support vector regression; information extraction; global ocean
LWZY
基于表层卫星遥感观测的中深层海洋遥感对于了解海洋内部异常及其动力过程有重要意义。如何从现有的海洋表层遥感观测资料提取海洋内部关键动力环境信息场是; 具有挑战性的海洋遥感技术前沿。本文采用支持向量回归(SVR)方法,通过卫星遥感观测获取的多源海表参量(海表高度异常(SSHA)、海表温度异常(S; STA)、海表盐度异常(SSSA)和海表风场异常(SSWA)),选择最优参量输入组合,感知海洋次表层温度异常(STA),并用实测Argo数据作精; 度验证。结果表明SVR模型可准确估算全球尺度的STA(1000; m深度以浅);当SVR输入变量为2个(SSHA、SSTA)、3个(SSHA、SSTA、SSSA)、4个(SSHA、SSTA、SSSA、SSWA); 时对应的平均均方差(MSE)分别为0.0090、0.0086、0.0087,平均决定系数(R~2)分别为0.443、0.457、0.485。因此; ,除了SSHA和SSTA外,SSSA与SSWA的输入对SVR模型的估算有积极影响,有助于提高STA的估算精度。在全球增暖与减缓背景下,该研究可为; 从表层卫星遥感观测提取海洋内部热力异常信息研究提供重要技术支持,有利于拓展卫星对海观测范围。
Abstract
Subsurface thermal structure of the global ocean is a key factor that; reflects the impact of global climate variability and change. Accurately; determining and describing the global subsurface and deeper ocean; thermal structure from satellite measurements are becoming even more; important for understanding the ocean interior anomaly and dynamic; processes during recent global warming and hiatus. The extent to which; such surface remote sensing observations can be used to develop; information about the global ocean interior is essential but; challenging. This work proposes a Support Vector Regression (SVR); method, a popular machine learning method for data regression used to; estimate Subsurface Temperature Anomaly (STA) in the global ocean. The; SVR model can well estimate the global STA upper 1000 m through a suite; of satellite remote sensing observations of sea surface parameters; [including Sea Surface Height Anomaly (SSHA), Sea Surface Temperature; Anomaly (SSTA), Sea Surface Salinity Anomaly (SSSA), and Sea Surface; Wind Anomaly (SSWA)] with in situ Argo data for training and testing at; different depth levels. In this study, we employed the Mean Squared; Error (MSE) and squared correlation coefficient (R~2) to assess the; performance of SVR on STA estimation. Results from the SVR model were; validated to test the accuracy and reliability using the worldwide Argo; STA data (upper 1000 m depth). The average MSE and R~2 of the 15 levels; are 0.0090/0.0086/0.0087 and 0.443/0.457/0.485 for two attributes (SSHA,; SSTA)/three attributes (SSHA, SSTA, SSSA)/four attributes (SSHA, SSTA,; SSSA, SSWA) SVR, respectively. The estimation accuracy was improved by; including SSSA and SSWA for SVR input (MSE decreased by 0.4%/0.3% and; R~2 increased by 1.4%/4.2% on average). The estimation accuracy; gradually decreased with the increase in depth from 500 m. With the; increase in depth, the absolute value of STA became smaller, i.e., it; became more indistinctive in the spatial heterogeneity. The STA became; less intensive in the deeper ocean due to the water stratification and; stability. Results showed that SSSA and SSWA, in addition to SSTA and; SSHA, are useful parameters that can help estimate the subsurface; thermal structure and improve the STA estimation accuracy. Moreover, an; obvious advantage for SVR is the absence of limitation on the input of; sea surface parameters. Therefore, we can figure out more potential and; useful sea surface parameters from satellite remote sensing as input; attributes to further improve the STA sensing accuracy from SVR machine; learning. This study provides a helpful technique for studying thermal; variability in the ocean interior, which has played an important role in; recent global warming and hiatus from satellite observations over global; scale.
Ref
Fund_Code
国家自然科学基金; 国家海洋局全球变化与海气相互作用专项; 国家自然科学基金; 国家自然科学基金; 福建省自然科学基金;; 中国博士后科学基金面上资助; 海西政务大数据应用协同创新中心资助
FileName
10.11834/jrs.20177026

Back to List