Articles


Document Type
Journal article (JA)
Title
SiO2-Fe/N/C catalyst with enhanced mass transport in PEM fuel cells
Author
Yang, Xiaohua (1); Wang, Yucheng (1, 2); Zhang, Gaixia (1); Du, Lei (1); Yang, Lijun (3); Markiewicz, Matthew (3); Choi, Ja-yeon (3); Chenitz, Régis (1); Sun, Shuhui (1)
作者单位
(1) Institut National De La Recherche Scientifique-énergie Matériaux Et Télécommunications, Varennes; QC; J3X 1S2, Canada (2) State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen; 361005, China (3) Ballard Power Systems Inc., Burnaby; V5J 5J8, Canada
RPAddress
Inst Natl Rech Sci Energie Mat & Telecommun, Varennes, PQ J3X 1S2, Canada.
Email
ResearchID
ORCID
Journal
Applied Catalysis B: Environmental
Publisher
Elsevier B.V.
ISSN
0926-3373
Published
2020-05-05, 264 ():-.
JCR
ImpactFactor
ISBN
Fund_Code
Natural Sciences and Engineering Research Council of Canada (NSERC)Natural Sciences and Engineering Research Council of Canada; Ballard Power Systems Inc.; Fonds de Recherche du Quebec-Nature et Technologies (FRQNT); Centre Quebecois sur les Materiaux Fonctionnels (CQMF); Institut National de la Recherche Scientifique (INRS); ECS-Toyota Young Investigator Fellowship; China Scholarship Council (CSC)China Scholarship Council; Office of China Postdoctoral Council [20180072]; Fonds de Recherche du Quebec Nature et Technologies [274384]
会议名称
会议地点
会议开始日期
会议结束日期
HYLWLB
HYJB
Keywords
Catalyst activity; Electrolytic reduction; Hydrophobicity; Mass transfer; Platinum metals; Porosity; Silica; Silica nanoparticles; SiO2 nanoparticles; Transport properties
Abstract
Today's high-loading non-platinum group metal (non-PGM, e.g., Fe/N/C) catalyst layer has presented a comparable performance to commercial Pt/C catalyst layer in the kinetic region. However, if the non-PGM catalyst layer is too thick (i.e. high loading), it will inevitably result in a severe performance loss in the mass-transport region. Herein, we employed SiO2 nanoparticle chains to adjust the mesoporous structure and wettability (i.e., making the catalyst surface more hydrophobic), in order to enhance the mass-transport properties of the catalyst layer with high-loading of Fe/N/C (labeled as SiO2-Fe/N/C). Simultaneously, SiO2-Fe/N/C catalyst shows more pyridinic-N and defects in the carbon matrix, which may create more active sites and thus compensate the decreased mass activity of oxygen reduction reaction (ORR) caused by the incorporation of inactive SiO2. Further, SiO2-Fe/N/C catalyst exhibits more than 25 % performance increase (e.g., at 0.4 V) than the pristine Fe/N/C in H2/Air proton exchange membrane fuel cells (PEMFCs). This work provides a new and effective strategy to improve the mass-transport properties of the Fe/N/C catalysts. ? 2019 Elsevier B.V.
WOS Categories
Chemistry, Physical; Engineering, Environmental; Engineering, Chemical
Accession Number
WOS:000515195200052
EI收录号
20195107876184
DOI
10.1016/j.apcatb.2019.118523
ESI_Type
CHEMISTRY
Collection
SCIE, EI

Back to List