英文论文


文献类型
Article
题名
Generalizations of the Erd?s-Kac Theorem and the Prime Number Theorem
作者
Wang, Biao; Wei, Zhining; Yan, Pan; Yi, Shaoyun
作者单位
[Wang, Biao] Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China. [Wei, Zhining] Ohio State Univ, Dept Math, Columbus, OH 43210 USA. [Yan, Pan] Univ Arizona, Dept Math, Tucson, AZ 85721 USA. [Yi, Shaoyun] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China.
通讯作者地址
Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China.
Email
wangbiao@amss.ac.cn; wei.863@osu.edu; panyan@arizona.edu; yishaoyun926@xmu.edu.cn
ResearchID
ORCID
期刊名称
COMMUNICATIONS IN MATHEMATICS AND STATISTICS
出版社
SPRINGER HEIDELBERG
ISSN
2194-6701
出版信息
2025-10, 13 (5):1177-1197.
JCR
影响因子
ISBN
基金
China Postdoctoral Science Foundation [12288201]; National Natural Science Foundation of China [2021TQ0350]; China Postdoctoral Science Foundation
会议名称
会议地点
会议开始日期
会议结束日期
关键词
Erd & odblac;s-Kac Theorem; Erd & odblac;s-Pomerance Theorem; Largest prime factor; Prime Number Theorem
摘要
In this paper, we study the linear independence between the distribution of the number of prime factors of integers and that of the largest prime factors of integers. Under a restriction on the largest prime factors of integers, we will refine the Erd & odblac;s-Kac Theorem and Loyd's recent result on Bergelson and Richter's dynamical generalizations of the Prime Number Theorem, respectively. At the end, we will show that the analogue of these results holds with respect to the Erd & odblac;s-Pomerance Theorem as well.
一级学科
Mathematics
WOS入藏号
WOS:001581867500004
EI收录号
DOI
10.1007/s40304-023-00354-6
ESI
收录于
SCIE

返回