Articles


Document Type
Journal article (JA)
Title
A method for improving the crack resistance of aluminum alloy aircraft skin inspired by plant leaf
Author
Wu, Lushen (1); Wang, Teng (1, 2); Hu, Yun (1, 3); Liu, Jiaming (1); Song, Minjie (1)
作者单位
(1) School of Mechatronics Engineering, Nanchang University, Nanchang; 330031, China (2) School of Aerospace Engineering, Xiamen University, Xiamen; 361102, China (3) Department of Mechanical Engineering, Imperial College London, London; SW7 2AZ, United Kingdom
RPAddress
Email
ResearchID
ORCID
Journal
Theoretical and Applied Fracture Mechanics
Publisher
Elsevier B.V.
ISSN
0167-8442
Published
2020-04, 106 ():.
JCR
ImpactFactor
ISBN
Fund_Code
会议名称
会议地点
会议开始日期
会议结束日期
HYLWLB
HYJB
Keywords
Aircraft; Aluminum alloys; Biomimetics; Crack propagation; Crack tips; Edge detection; Fractals; Residual stresses; Stress intensity factors
Abstract
Aircraft skins are likely to experience cracks and fracture failure due to the combined action of shear, bending, and torsional load. Inspired by the crack resistance exhibited by plant leaf, a method is proposed to improve the crack resistance of aluminum alloy aircraft skin. The characteristic parameters of main and secondary leaf veins are extracted by image edge detection and analysis methods. According to a constructed collection of self-similar fractal sets, a bio-inspired residual stress field with fractal characteristics extracted from leaf veins is applied to specimens ahead of crack tip by using laser peening. The effects of fractal parameters on crack retardation are analyzed using interaction integral. The results show that the stress intensity factor ahead of crack tip is reduced by applying a bio-inspired residual stress field, whereas the plastic zone area ahead of crack tip is enlarged. The correlation between these two trends reveals the mechanism of stress intensity decrease after the introduction of bio-inspired residual stress field. The optimal crack retardation effect is achieved at a fractal angle of 55°, at which the residual fatigue life is increased by up to 203.0%. Compared with square-shaped laser peening, full-coverage laser peening, square criss-cross pattern method, and single-edge notched tensile (SENT) specimen repair method, the proposed method achieves the longest residual fatigue life, which is almost three times that of the square-shaped laser peening method. Therefore, this theoretical study presents a potential method for improving the crack resistance of aluminum alloy aircraft skin. ? 2019 Elsevier Ltd
WOS Categories
Accession Number
EI收录号
20195307950035
DOI
10.1016/j.tafmec.2019.102444
ESI_Type
ENGINEERING
Collection
EI

Back to List